28 and Me

Neuroimaging studies typically describe properties of the brain through group-averaged, cross-sectional designs. Network neuroscience has moved towards densely sampling individuals to probe the dynamic properties of the human brain over time. To date, these models have overlooked the influence of sex hormones on intrinsic brain networks. This is surprising, given that the brain is an endocrine organ and hormonal effects on the central nervous system can be measured across multiple spatio-temporal scales. Across a typical menstrual cycle (occurring every 25-30 days), naturally cycling females experience a ~8-fold increase in estrogen and an ~80-fold increase in progesterone.

"28 and Me" is a dense-sampling, multimodal brain imaging study probing the extent to which endogenous fluctuations in sex hormones across a complete reproductive cycle -28 days- alter functional connectivity of brain networks at rest. Daily time-locked blood draws and sMRI/fMRI scans were acquired across 30 consecutive days. Dynamic community detection and time-lagged vector autoregression models revealed that estradiol drives greater functional coherence across much of the brain's cortical surface, particularly in estrogen-receptor (ER)-rich brain networks (e.g. Default Mode, Frontoparietal).

Next, we used high resolution hippocampal subfield imaging to examine the relationship between sex hormones and medial temporal lobe morphology. We found that unique subfields of the human hippocampus and surrounding medial temporal lobe are impacted by fluctuating sex hormones across the 28-day cycle. These results establish sex hormones’ ability to rapidly and dynamically shape medial temporal lobe morphology across the human menstrual cycle.

A follow-up study "28andOC" was completed in 2019 to investigate the impact of chronic hormone suppression on brain structure/function in the same individual over the same time-course.

Learn more:

Pritschet L., Santander T., Taylor C., Layher E., Yu S., Miller M.B., Grafton S.T., Jacobs E.G. (2020) Functional reorganization of brain networks across the human menstrual cycle. NeuroImage (In Press) Preprint available: bioRxiv doi:10.1101/866913

Taylor C., Pritschet L., Olsen R., Layher E., Santander T., Grafton S.T., Jacobs E.G. Progesterone shapes medial temporal lobe volume across the human menstrual cycle. NeuroImage (In Press) Preprint available: bioRxiv doi:10.1101/934141

Fitzgerald M., Pritschet L., Santander T., Grafton S.T., Jacobs E.G. Dynamic cerebellar network organization across the human menstrual cycle (Under Review) Preprint available: bioRxiv doi:10.1101/123869

Mueller J., Pritschet L., Santander T., Taylor C., Grafton S.T. *Jacobs E.G., *Carlson J.M. Dynamic community detection reveals transient reorganization of functional brain network subcommunities across a female menstrual cycle. (Submitted) *Co-senior authors

Pritschet L. et al. (June, 2019) “Estradiol shapes resting state functional connectivity strength over a complete reproductive cycle” Poster presented at the Organization for Human Brain Mapping, Rome, Italy.

Taylor C.T. et al. (June, 2019) “Human hippocampal subfield volume variability across one complete reproductive cycle” Poster presented at the Organization for Human Brain Mapping, Rome, Italy.

Layher E. et al. (June, 2019) “Within-subject fMRI analyses of the successful retrieval effect in recognition memory” Poster presented at the Organization for Human Brain Mapping, Rome, Italy.

Supported by the Rutherford B. Fett Fund.