

Impact of Sex Steroid Hormones on Human **Cerebellar Network Organization**

Morgan Fitzgerald¹, Laura Pritschet¹, Tyler Santander¹, Emily G. Jacobs^{1,2}

¹Department of Psychological and Brain Sciences, University of California, Santa Barbara ²Neuroscience Research Institute, University of California, Santa Barbara

UCSB BRAIN INITIATIVE

INTRODUCTION

- The cerebellum exhibits rich expression of sex steroid hormones and receptors.
 - Across a typical menstrual cycle (~28 days), the average female will experience a 12-fold increase in estrogen and an 800-fold increase in progesterone¹.
 - Previous work demonstrates that estradiol shapes functional connectivity of the cerebral cortex across the cycle².
- Current study: How do sex steroid hormones impact resting-state functional connectivity of the cerebellum?
 - Utilized the 28andMe dataset² to examine the extent to which endogenous fluctuations in estradiol and progesterone across a complete menstrual cycle alter functional connectivity of cerebellar networks at rest.

METHODS

PARTICIPANT: The participant is a right-handed Caucasian female, aged 23 years old at the onset of the study. She is a healthy, regularly and naturally

Time-Synchronous Analysis: Edgewise Regression

RESULTS

Increases in progesterone and estradiol across the cycle are associated with *diminished* cerebellar functional connectivity

Figure 2. Edgewise regression between coherence and hormones. 'Cooler' colors indicate decreasing coherence with increasing hormone concentrations (FDR-corrected, q < .05).

Time-Synchronous Analysis: Correlation

cycling woman, with no history of neuropsychiatric or endocrine disorders.

DATA COLLECTION: The participant underwent daily time-locked (±30 min) blood draws and MRI scans for 30 consecutive days. Venous blood sampling took place each morning to evaluate serum concentrations of luteinizing hormone (LH), follicle stimulating hormone (FSH), 17β -estradiol (E), and progesterone (P) via liquid chromatography-mass spectrometry, conducted at the Brigham and Women's Research Assay Core.

Figure 1. Participant's hormone concentrations plotted by day of cycle. 17β -estradiol, progesterone, luteinizing hormone (LH), and follicle stimulating hormone (FSH) levels fell within standard ranges. Adapted from Pritschet et al. 2020.

MRI PROCESSING: We acquired a daily 10 min. resting-state scan on a 3T Siemens Prisma at the UCSB Brain Imaging Center (T2* multi-band EPI; 72 oblique slices; TR = 720 ms; voxel size = 2 mm^3). Data were realigned/unwarped, registered to a subject-specific anatomical template (created with ANTs), and smoothed (4 mm FWHM) in SPM12; in-house Matlab scripts were used for additional preprocessing, including global scaling, detrending, nuisance regression, and temporal filtering using a maximal overlap discrete wavelet transform. Signal from the adjacent left/right cerebral cortex within 7 mm of the cerebellum was regressed out.

RESTING-STATE FUNCTIONAL CONNECTIVITY (RSFC) ANALYSES:

For each day, eigen-timeseries from 99 clusters 7-network parcellation defined by the Ren³ atlas were extracted and assigned to 7 functional networks identified by Buckner et al⁴. Edgewise functional connectivity was estimated via magnitude squared coherence, restricted to low-frequency fluctuations in wavelet scales 3-6 (~0.01 - 0.17 Hz). All association DorsalAttn matrices were FDR-thresholded (q < .05). Common VentAttn O SomatoMotor O Limbic graph theory metrics were employed to characterize functional network topology: **efficiency** (a measure of *within* network integration) and **participation coefficient** (a measure of *between* network integration)⁵. Spearman's correlation was used to address associations between hormones and network topologies, while vector autoregressive models evaluated time-lagged effects.

Increases in estradiol across the cycle are correlated with decreases in global efficiency

Figure 3. Time-synchronous associations between network efficiency and estradiol. Spearman's correlation between global efficiency and estradiol (FDR-corrected at q < .05; '***' indicates p < .001). SMN and VAN efficiency were greater than three standard deviations from the mean on day 21 of cycle and were removed from the plot. Abbreviations: DAN, Dorsal Attention Network; SMN, Somato-Motor Network; VAN, Ventral Attention Network.

Time-Lagged Analysis: Vector Autoregression

In order to more directly capture time-dependent modulation of network connectivity and hormonal states, we specified and estimated simultaneous 2ndorder vector autoregressive models:

> $Brain_t = Brain_{t-1} + Estradiol_{t-1} + Brain_{t-2} + Estradiol_{t-2}$ $Estradiol_{t-1} = Brain_{t-1} + Estradiol_{t-1} + Brain_{t-2} + Estradiol_{t-2}$

BETWEEN-NETWORK CONNECTIVITY

Estradiol did not predict between-network connectivity.

 $Estradiol_{t} = SMN_{t-1} + Estradiol_{t-1} + SMN_{t-2} + Estradiol_{t-2}$

Term Est SE T(p)				
SMN _{t-1}	0.44	0.21	2.12 (.041)	
Estro _{t-1}	0.12	0.24	0.48 (.631)	
SMN _{t-2}	0.15	0.19	0.79 (.442)	
Estro _{t-2}	-0.17	0.24	-0.70 (.491)	
R ² = 0.27 (p = .099); RMSE = 0.78 (p = .035)				

· .	
	1000

$Estradiol_t = DMN_{t-1} + Estradiol_{t-1} + DMN_{t-2} + Estradiol_{t-1}$

)	Term	Est	SE	T(p)
(.041)	DMN _{t-1}	-0.34	0.17	-1.98 (.046)
(.631)	Estradiol _{t-1}	-0.28	0.19	-1.46 (.155)
(.442)	DMN _{t-2}	-0.09	0.13	-0.68 (.496)
(.491)	Estradiol _{t-2}	0.08	0.19	0.42 (.666)
= .035)	$R^2 = 0$.21 (p = .189	9); RMSE =	0.62 (p = .004)

CONCLUSIONS & FUTURE AIMS

- Serum concentrations of E and P fell within expected ranges⁶ and displayed the canonical fluctuations across the menstrual cycle, with E peaking in late follicular phase and P concentrations rising dramatically during the mid-luteal phase.
- Time-synchronous edgewise analyses: Increases in progesterone over time are associated with robust decreases in functional connectivity across the cerebellum.
- Time-synchronous correlational analyses: Increases in estradiol over the cycle are correlated to decreases in functional connectivity across the cerebellum.
- Time-Lagged analyses: Networks exhibit functional stability among metrics of between- and within-network integration.
- Daily hormone levels demonstrate negative associations with cerebellar connectivity, while temporal variability in the cerebellum is attributed *more* to previous network states rather than estradiol concentrations.

References

1. Stricker et al. Clin Chem Lab Med. 44, 883-887 (2006) 2. Pritschet et al. (2020). 3. Ren et al. Scientific reports, 9(1), 1-12 (2019). 4. Buckner et al. Journal of neurophysiology, 106(5), 2322-2345 (2011). 5. Bullmore et al. Annu. Rev. Clin. Psychol. 7, 113-140 (2011). 6. Fehring et al. J Obstet Gynecol Neonatal Nurs. 35(3), 376-384 (2006).

Acknowledgments

Funding provided by the Undergraduate Research and Creative Activities (URCA) grant from the University of California, Santa Barbara. Thanks to Laura Pritschet, Tyler Santander and Emily Jacobs for their contributions.

WITHIN-NETWORK CONNECTIVITY

- Estradiol did not predict within-network connectivity.
- Cerebellar DAN (lag 1), VAN (lag 2), and SMN (lag 2) exhibited significant autoregressive effects of network states, with significant model fits for the **DAN** and **VAN**.

 $Estradiol_{t=1} = DAN_{t=1} + Estradiol_{t=1} + DAN_{t=2} + Estradiol_{t=2}$

Term	Est	SE	T(p)
DAN _{t-1}	0.55	0.20	2.68 (.014)
Estradiol _{t-1}	-0.11	0.21	-0.54 (.596)
DAN _{t-2}	0.11	0.20	0.58 (.577)
Estradiol _{t-2}	0.07	0.20	0.33 (.746)
R ² = 0.50 (p = .002); RMSE = 0.65 (p = .0003)			

 $Estradiol_{t} = VAN_{t-1} + Estradiol_{t-1} + VAN_{t-2} + Estradiol_{t-2}$

Term	Est	SE	Т(р)
VAN _{t-1}	0.33	0.18	1.89 (.052)
Estradiol _{t-1}	-0.30	0.17	-1.78 (.088)
VAN _{t-2}	0.33	0.12	2.82 (.004)
Estradiol _{t-2}	0.24	0.17	1.42 (.163)
$R^2 = 0.52 (p = .002); RMSE = 0.52 (p = .0002)$			