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Abstract1

Densely sampling the individual connectome could transform our understanding of the2

functional organization of the human brain. The brain is an endocrine organ, sensitive to3

cyclic changes in hormone production. However, the influence of sex hormones on the4

brain’s intrinsic network architecture is largely unknown. Here, we examine the extent to5

which endogenous fluctuations in sex hormones alter functional brain networks at rest in6

a woman over 30 consecutive days. Time-synchronous analyses illustrate estrogen and7

progesterone’s widespread influence on cortical dynamics throughout the cycle. Time-8

lagged analyses examined the temporal flow of these relationships and reveal estrogen’s9

ability to drive connectivity across major functional networks, including the Default10

Mode and Dorsal Attention Networks, whose hubs are densely populated with estrogen11

receptors. These results reveal the rhythmic nature of brain network reorganization12

across the human menstrual cycle. Considering the hormonal milieu is critical for fully13

understanding the intrinsic dynamics of the human brain.14



Introduction15

The brain is an endocrine organ whose day-to-day function is intimately tied to the action16

of neuromodulatory hormones1–4. Yet, the study of brain-hormone interactions in human17

neuroscience has often been woefully myopic in scope: the classical approach of18

interrogating the brain involves collecting data at a single time point from multiple19

subjects and averaging across individuals to provide evidence for a20

hormone-brain-behavior relationship. This cross-sectional approach obscures the rich,21

rhythmic nature of endogenous hormone production. A promising trend in network22

neuroscience is to flip the cross-sectional model by tracking small samples of individuals23

over timescales of weeks, months, or years to provide insight into how biological,24

behavioral, and state-dependent factors influence intra- and inter-individual variability in25

the brain’s intrinsic network organization5–7. Neuroimaging studies that densely sample26

the individual connectome are beginning to transform our understanding of the dynamics27

of human brain organization. However, these studies commonly overlook sex steroid28

hormones as a source of variability—a surprising omission given that sex hormones are29

powerful neuromodulators that display stable circadian, infradian, and circannual30

rhythms in nearly all mammalian species. In the present study, we illustrate robust,31

time-dependent interactions between the sex steroid hormones 17�-estradiol and32

progesterone and the functional network organization of the brain over a complete33

menstrual cycle, offering compelling evidence that sex hormones drive widespread34

patterns of connectivity in the human brain.35
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Converging evidence from rodent1,2,8, non-human primate9,10, and human36

neuroimaging studies11–16 has established the widespread influence of 17�-estradiol and37

progesterone on regions of the mammalian brain that support higher level cognitive38

functions. Estradiol and progesterone signaling are critical components of cell survival39

and plasticity, exerting excitatory and inhibitory effects that are evident across multiple40

spatial and temporal scales4,8. The dense expression of estrogen and progesterone41

receptors (ER; PR) in cortical and subcortical tissue underscores the widespread nature of42

hormone action. For example, in non-human primates ⇠50% of pyramidal neurons in43

prefrontal cortex (PFC) express ER10 and estradiol regulates dendritic spine proliferation44

in this region3. In rodents, fluctuations in estradiol across the estrous cycle enhance45

spinogenesis in hippocampal CA1 neurons and progesterone inhibits this effect1.46

During an average human menstrual cycle, occurring every 25-32 days, women47

experience a ⇠12-fold increase in estradiol and an ⇠800-fold increase in progesterone.48

Despite this striking change in endocrine status, we lack a complete understanding of how49

the large-scale functional architecture of the human brain responds to rhythmic changes50

in sex hormone production across the menstrual cycle. Much of our understanding of51

cycle-dependent changes in brain structure1,17 and function18–20 comes from rodent studies,52

since the length of the human menstrual cycle (at least 5⇥ longer than rodents’) presents53

experimental hurdles that make longitudinal studies challenging. A common solution is to54

study women a few times throughout their cycle, targeting stages that roughly correspond55

to peak/trough hormone concentrations. Using this ‘sparse-sampling’ approach, studies56
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have examined resting-state connectivity in discrete stages of the cycle13,14,21–23; however,57

some of these findings are undermined by inconsistencies in cycle staging methods, lack58

of direct hormone assessments, or limitations in functional connectivity methods.59

In this dense-sampling, deep-phenotyping study, we assessed brain-hormone60

interactions over 30 consecutive days representing a complete menstrual cycle. Our61

results reveal that intrinsic functional connectivity is influenced by hormone dynamics62

across the menstrual cycle at multiple spatiotemporal resolutions. Estradiol and63

progesterone conferred robust time-synchronous and time-lagged effects on the brain,64

demonstrating that intrinsic fluctuations in sex hormones drive changes in the functional65

network architecture of the human brain. Together, these findings provide insight into66

how brain networks reorganize across the human menstrual cycle and suggest that67

consideration of the hormonal milieu is critical for fully understanding the intrinsic68

dynamics of the human brain.69

Results70

A healthy, naturally-cycling female (author L.P.; age 23) underwent venipuncture and MRI71

scanning for 30 consecutive days. The full dataset consists of daily mood, diet, physical72

activity, and behavioral assessments, task-based and resting-state fMRI, structural MRI,73

and serum assessments of pituitary gonadotropins and ovarian sex hormones.74

Neuroimaging data, code, and daily behavioral assessments will be publicly accessible75

upon publication.76
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Endocrine assessments77

Analysis of daily sex hormone (by liquid-chromatography mass-spectrometry; LC-MS)78

and gonadotropin (by chemiluminescent immunoassay) concentrations confirmed the79

expected rhythmic changes of a typical menstrual cycle, with a total cycle length of 2780

days. Serum levels of estradiol and progesterone were lowest during menses (day 1-4) and81

peaked in late follicular (estradiol) and late luteal (progesterone) phases (Fig. 1; Table 1).82

Progesterone concentrations surpassed 5 ng/mL in the luteal phase, signaling an ovulatory83

cycle.84

Time-synchronous associations between sex hormones and85

whole-brain functional connectivity86

To begin, we tested the hypothesis that whole-brain functional connectivity at rest is87

associated with intrinsic fluctuations in estradiol and progesterone in a time-synchronous88

(i.e. day-by-day) fashion. Based on the enriched expression of ER in PFC10, we predicted89

that the Default Mode, Frontoparietal Control, and Dorsal Attention Networks would be90

most sensitive to hormone fluctuations across the cycle. For each session, the brain was91

parcellated into 400 cortical regions from the Schaefer atlas24 and 15 subcortical regions92

from the Harvard-Oxford atlas (Fig. 2c). A summary time-course was extracted from each93

parcel, data were temporally-filtered using a maximal overlap discrete wavelet transform94

(scales 3-6; ⇠0.01–0.17 Hz), and 415 ⇥ 415 functional association matrices were constructed95

via magnitude-squared coherence (FDR-thresholded at q < .05; see Online Methods for a96

full description of preprocessing and connectivity estimation). Next, we specified edgewise97
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regression models, regressing coherence against estradiol and progesterone over the 3098

days of the study. All data were Z-scored prior to analysis and models were thresholded99

against empirical null distributions generated through 10,000 iterations of nonparametric100

permutation testing. Results reported below survived a conservative threshold of p < .001.101

We observed robust increases in coherence as a function of increasing estradiol across102

the brain (Fig. 2a). When summarizing across networks (computing the mean association103

strength across network nodes, where strength was defined per graph theory as the sum104

of positive and negative edge weights linked to each node, independently), components105

of the Temporal Parietal Network had the strongest positive associations on average,106

as well as the most variance (Fig. 2d). With the exception of Subcortical nodes, all107

networks demonstrated some level of significantly positive association strength (95%108

CIs not intersecting zero). We observed a paucity of edges showing inverse associations109

(connectivity decreasing while estradiol increased), with no networks demonstrating110

significantly negative association strengths on average (Fig. 2d). These findings suggest111

that edgewise functional connectivity is primarily characterized by increased coupling as112

estradiol rises over the course of the cycle.113

Progesterone, by contrast, yielded a widespread pattern of inverse association across114

the brain, such that connectivity decreased as progesterone rose (Fig. 2b). Most networks115

(with the exception of the Salience/Ventral Attention and SomatoMotor Networks) still116

yielded some degree of significantly positive association over time; however, the general117

strength of negative associations was larger in magnitude and significantly nonzero across118
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all networks (Fig. 2d). Together, these results align with animal models suggesting119

excitatory and inhibitory roles for estradiol and progesterone, respectively, manifested120

here as predominant increases and decreases in functional connectivity across the cycle.121

Time-lagged associations between estradiol and122

whole-brain functional connectivity123

We then employed time-lagged methods from dynamical systems analysis to further124

elucidate the influence of hormonal fluctuations on intrinsic functional connectivity:125

specifically, vector autoregression (VAR), which supports more directed, causal inference126

than standard regression models. Here we chose to focus exclusively on estradiol for two127

reasons: 1) the highly-bimodal time-course of progesterone confers a considerably longer128

autocorrelative structure, requiring many more free parameters (i.e. higher-order models,129

ultimately affording fewer degrees of freedom); and 2) progesterone lacks an appreciable130

pattern of periodicity in its autocovariance with network timeseries, suggesting less131

relevance for time-lagged analysis over a single cycle. In contrast, estradiol has a much132

smoother time-course that is well-suited for temporal-evolution models such as VAR.133

In short, VAR solves a simultaneous system of equations that predicts current states of134

the brain and estradiol from the previous states of each. We report results from second-order135

VAR models: thus, in order to predict connectivity or hormonal states on a given day of136

the experiment, we consider their values on both the previous day (hereafter referred to137

as ‘lag 1’) and two days prior (hereafter referred to as ‘lag 2’). See Online Methods for an138

additional mathematical description. Ultimately, if brain variance over time is attributable139
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to previous states of estradiol, this suggests that temporal dynamics in connectivity may140

be driven (in part) by fluctuations in hormonal states. Vector autoregressive models were141

specified for each network edge; as before, all data were Z-scored and models were142

empirically thresholded against 10,000 iterations of nonparametric permutation testing.143

Surviving edges were significant at the p < .001 level.144

When predicting edgewise connectivity states, a powerful disparity emerged between145

the brain’s autoregressive effects and the effects of estradiol. We observed vast, whole-146

brain associations with prior hormonal states, both at lag 1 and lag 2 (Fig. 3a). Perhaps147

most immediately striking, the sign of these brain-hormone associations inverts between148

lags, such that it is predominantly positive at lag 1 and predominantly negative at lag149

2—this holds for all networks when considering their nodal association strengths (Fig. 3b).150

We interpret this as a potential regulatory dance between brain states and hormones over151

the course of the cycle, with estradiol perhaps playing a role in maintaining both steady152

states (when estradiol is low) and transiently-high dynamics (when estradiol rises). No153

such pattern emerged in the brain’s autoregressive effects, with sparse, low-magnitude,154

and predominantly negative associations at lag 1 and lag 2 (Supplementary Fig. 1). The155

flow of effect between estradiol and edgewise connectivity was partially unidirectional.156

Previous states of coherence predicted estradiol across a number of edges, intersecting157

all brain networks. This emerged at both lag 1 and lag 2; however, unlike the lagged158

effects of estradiol on coherence, association strengths were predominantly negative at159

both lags (Supplementary Fig. 2). Moreover—and importantly—none of the edges that160
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predicted estradiol were also significantly predicted by estradiol at either lag (i.e. there was161

no evidence of mutual modulation for any network edge).162

Time-lagged associations between estradiol and163

functional network topologies164

Given the findings above, we applied the same time-lagged framework to topological states165

of brain networks in order to better capture the directionality and extent of brain-hormone166

interactions at the network level. These states were quantified using common graph theory167

metrics: namely, the participation coefficient (an estimate of between-network integration) and168

global efficiency (an estimate of within-network integration). As before, all data were Z-scored169

prior to analysis, and model parameters/fit were compared against 10,000 iterations of170

nonparametric permutation testing. We focus on significant network-level effects below,171

but a full documentation of our findings is available in the Supplementary Information.172

Estradiol and between-network participation173

As expected, estradiol demonstrated significant autoregressive effects across all models.174

Previous states of estradiol also significantly predicted between-network integration across175

several intrinsic networks; however, overall model fit (variance accounted for, R2, and root176

mean-squared error, RMSE) was at best marginal compared to empirical null distributions177

of these statistics. For example, in the Dorsal Attention Network (DAN; Fig. 4a-b; Table178

2), estradiol was a significant predictor of between-network participation both at lag 1 (b =179

�0.56, SE = 0.25, t = �2.27, p = .035) and at lag 2 (b = 0.53, SE = 0.24, t = 2.16, p = .042).180

Overall fit for DAN participation, however, rested at the classical frequentist threshold181
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for significance, relative to empirical nulls (R2 = 0.32, p = .049; RMSE = 0.79, p = .050).182

We observed a similar pattern of results for the Default Mode Network (DMN) and183

Limbic Network, where lagged states of estradiol significantly predicted cross-network184

participation, but model fit as a whole was low (see Supplementary Table 1). Interestingly,185

for all three of these networks, there were no significant autoregressive effects of brain186

states—previous states of network participation also did not predict estradiol, suggesting187

that modulation of network topology likely goes from hormones to brain, not the other188

way around.189

The single exception to this trend was the Visual Network. Prediction of its between-190

network participation yielded a significant model fit (R2 = 0.37, p = .024;RMSE =191

0.79, p = .044). However, this was primarily driven by autoregressive effects of the192

network at lag 1 (b = �0.39, SE = 0.17, t = �2.30, p = .027) and lag 2 (b = �0.43, SE =193

0.17, t = �2.46, p = .024); estradiol yielded a marginal (but nonsignificant) effect only at194

lag 2 (b = 0.49, SE = 0.24, t = 2.01, p = .058).195

Estradiol and global efficiency196

In contrast to between-network integration, estradiol was a strong predictor of within-197

network integration, both in terms of parameter estimates and overall fit. Here, the198

Default Mode Network provided the best-fitting model (R2 = 0.50, p = .003;RMSE =199

0.70, p = .022; Fig. 5a-b). As before, estradiol demonstrated significant autoregressive200

effects at lag 1 (b = 1.15, SE = 0.19, t = 6.15, p < .0001) and lag 2 (b = �0.48, SE =201

0.19, t = �2.50, p = .012). When predicting DMN efficiency, previous states of estradiol202
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remained significant both at lag 1 (b = 0.98, SE = 0.23, t = 3.37, p = .0003) and at203

lag 2 (b = �0.93, SE = 0.23, t = �4.00, p = .002). Critically, these effects were purely204

directional: prior states of Default Mode efficiency did not predict estradiol, nor did205

they have significant autoregressive effects, supporting the conclusion that variance in206

topological network states (perhaps within-network integration, in particular) is primarily207

accounted for by estradiol—not the other way around (Table 3).208

We observed a similar pattern of results in the Dorsal Attention Network (R2 =209

0.37, p = .022;RMSE = 0.77, p = .023; Fig. 4c; Table 3). Estradiol again demonstrated210

significant autoregressive effects at lag 1 (b = 1.17, SE = 0.19, t = 6.30, p < .0001) and211

lag 2 (b = �0.48, SE = 0.19, t = �2.49, p = .011), along with predicting DAN efficiency212

both at lag 1 (b = 0.84, SE = 0.25, t = 3.35, p = .002) and at lag 2 (b = �0.67, SE =213

0.16, t = �2.57, p = .017). As above, Dorsal Attention efficiency had no significant effects214

on estradiol, nor were there significant autoregressive effects of the network on itself.215

The Control and Temporal Parietal networks also yielded partial support for time-216

dependent modulation of efficiency by estradiol (Control R2 = 0.34, p = .039; Temporal217

Parietal R2 = 0.36, p = .026). The time-lagged effects of estradiol followed the trends218

observed above; however, the overall model fit (with respect to prediction error) was not219

significantly better than their empirical nulls (Control RMSE = 0.83, p = .133; Temporal220

Parietal RMSE = 0.79, p = .057). Estradiol did not explain a significant proportion of221

variance in efficiency for any other networks (see Supplementary Table 2 for a complete222

summary of VAR models for global efficiency).223
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Discussion224

In this dense-sampling, deep-phenotyping project, a naturally-cycling female underwent225

resting state fMRI and venipuncture for 30 consecutive days, capturing the dynamic226

endocrine changes that unfold over the course of a complete menstrual cycle.227

Time-synchronous analyses illustrate estradiol’s widespread impact on cortical dynamics,228

spanning all but one of the networks in our parcellation. Time-lagged vector229

autoregressive models tested the temporal directionality of these effects, suggesting that230

intrinsic network dynamics are driven by recent states of estradiol, particularly with231

respect to within-network connectivity. Estradiol had the strongest predictive effects on232

the efficiency of Default Mode and Dorsal Attention Networks. In contrast to estradiol’s233

proliferative effects, progesterone was primarily associated with reduced coherence across234

the whole brain. These results reveal the rhythmic nature of brain network reorganization235

across the human menstrual cycle.236

The network neuroscience community has begun to probe functional networks over237

the timescale of weeks, months, and years to understand the extent to which brain networks238

vary between individuals or within an individual over time5,6,25–27. These studies indicate239

that functional networks are dominated by common organizational principles and stable240

individual features, especially in frontoparietal control regions6,7,25,27. An overlooked241

feature of these regions is the dense populations of estrogen and progesterone receptors,242

imparting exquisite sensitivity to major changes in sex hormone concentrations11,12,15,16,28,29.243

Our findings demonstrate significant effects of estradiol on functional network nodes244
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belonging to the DMN, DAN, and FCN that overlap with ER-rich regions of the brain,245

including medial/dorsal PFC10,30. This study merges the network neuroscience and246

endocrinology disciplines by demonstrating that higher-order processing systems are247

modulated by day-to-day changes in sex hormones over the timescale of one month.248

Animal studies offer unambiguous evidence that sex steroid hormones shape the249

synaptic organization of the brain, particularly in regions that support higher order250

cognitive functions1–4,8. In rodents, estradiol increases fast-spiking interneuron excitability251

in deep cortical layers31. In nonhuman primates, whose reproductive cycle length is252

similar to humans, estradiol increases the number of synapses in PFC3. Recently, this body253

of work has also begun to uncover the functional significance of sinusoidal changes in254

estradiol. For example, estradiol’s ability to promote PFC spinogenesis in ovariectomized255

animals occurs only if the hormone add-back regime mirrors the cyclic pattern of estradiol256

release typical of the macaque menstrual cycle9,32. Pairing estradiol with cyclic257

administration of progesterone blunts this increase in spine density32. In the258

hippocampus, progesterone has a similar inhibitory effect on dendritic spines, blocking259

the proliferative effects of estradiol 6 hours after administration1. Together, the preclinical260

literature suggests that progesterone antagonizes the largely proliferative effects of261

estradiol (for review, see Brinton and colleagues33). We observed a similar relationship,262

albeit at a different spatiotemporal resolution, with estradiol enhancing coherence across263

cortical networks and progesterone diminishing it. In sum, animal studies have identified264

estradiol’s influence on regional brain organization at the microscopic scale. Here, we265
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show that estradiol and progesterone’s influence is also evident at the mesoscopic scale of266

whole-brain activation, measured by spectral coherence, and macroscopic features of267

network topology.268

Additional evidence from group-based or sparser-sampling neuroimaging studies269

provide further support that cycle stage and sex hormones impact resting state270

networks13,14. Arélin and colleagues34 sampled an individual every 2-3 days across four271

cycles and found that progesterone was associated with increased connectivity between272

the hippocampus, dorsolateral PFC and the sensorimotor cortex, providing compelling273

evidence that inter-regional connectivity varies over the cycle. However, the sampling rate274

of this correlational study precluded the authors from capturing the neural effects of275

day-to-day changes in sex steroid hormones and from testing the temporal directionality276

of the effect with time-lagged models. Estradiol has both rapid, non-genomic effects and277

slower, genomic effects on the central nervous system. For example, over the rat estrous278

cycle, there is a dramatic 30% increase in hippocampal spine density within the 24-hour279

window in which estradiol concentrations peak. Here, we sought to capture both280

time-synchronous (rapid) and time-lagged (delayed) effects of sex steroid hormones,281

sampling every 24 hours for 30 consecutive days. In contrast to Arélin and colleagues, we282

observed robust, spatially-diffuse negative relationships between progesterone and283

coherence across the brain, while estradiol enhanced the global efficiency of discrete284

networks along with between-network integration. Our results illuminate how285

simultaneous, time-synchronous correlations and causal, time-lagged analysis reveal286
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unique aspects of where and how hormones exert their effect on the brain’s intrinsic287

networks: time synchronous analyses illustrate estrogen and progesterone’s widespread288

influence on cortical coupling, while vector autoregressive models allowed us to examine289

the temporal flow of effect in those relationships, showing that estradiol drives increased290

connectivity—particularly in DMN and DAN.291

The following considerations could enhance the interpretation of these data. First,292

this study represents extensive neural phenotyping of a healthy participant with canonical293

hormone fluctuations over a reproductive cycle. To enrich our understanding of the294

relationship between sex hormones and brain function, examining network organization in295

a hormonally-suppressed female (i.e. an oral contraceptive user) would serve as a valuable296

comparison. Oral hormonal contraceptives suppress the production of ovarian hormones:297

if dynamic changes in estradiol are indeed causing increases in resting connectivity, we298

expect hormonally-suppressed individuals to show blunted functional brain network299

dynamics over time. Given the widespread use of oral hormonal contraceptives (100300

million users worldwide), it is critical to determine whether sweeping changes to an301

individual’s endocrine state impacts brain states and whether this, in turn, has any bearing302

on cognition.303

Second, in normally-cycling individuals, sex hormones function as304

proportionally-coupled nonlinear oscillators35. Within-person cycle variability is almost as305

large as between-person cycle variability, which hints that there are highly-complex306

hormonal interactions within this regulatory system35,36. The VAR models we have307
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explored reveal linear dependencies between brain states and hormones, but other308

dynamical systems methods (e.g. coupled latent differential equations) may offer more309

biophysical validity35. Unfortunately, the current sample of only one individual across310

one complete cycle precludes robust estimation of such a model. Future studies should311

enroll a larger sample of women to assess whether individual differences in hormone312

dynamics drive network changes.313

Third, while coherence is theoretically robust to timing differences in the314

hemodynamic response function, hormones can affect the vascular system37. Therefore,315

changes in coherence may be due to vascular artifacts that affect the hemodynamic316

response in fMRI, rather than being neurally-relevant. Future investigations exploring the317

assumptions of hemodynamics in relation to sex steroid hormone concentrations will add318

clarity as to how the vascular system’s response to hormones might influence large-scale319

brain function.320

Fourth, these findings contribute to an emerging body of work on estradiol’s ability321

to enhance the efficiency of PFC-based cortical circuits. In young women performing a322

working memory task, PFC activity is exaggerated under low estradiol conditions and323

reduced under high estradiol conditions12. The same pattern is observed decades later in324

life: as estradiol production decreases over the menopausal transition, working memory-325

related PFC activity becomes more exaggerated, despite no difference in working memory326

performance15. Here, we show that day-to-day changes in estradiol drive the global327

efficiency of functional networks, with the most pronounced effects in networks with328
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major hubs in the PFC. Together, these findings suggest that estradiol generates a neurally329

efficient PFC response at rest and while engaging in a cognitive task. The mechanism by330

which this occurs may be through enhancing dopamine synthesis and release38: the PFC331

is innervated by midbrain dopaminergic neurons that form the mesocortical dopamine332

track39. Decades of evidence have established that dopamine signaling enhances the signal-333

to-noise ratio of PFC pyramidal neurons40 and drives cortical efficiency41–44. More recently334

it was discovered that estradiol enhances dopamine synthesis, release, and turnover and335

modifies the basal firing rate of dopaminergic neurons45–47, a plausible neurobiological336

mechanism by which alterations in estradiol could impact cortical efficiency. Future337

multimodal neuroimaging studies in humans can clarify the link between estradiol’s338

ability to stimulate dopamine release and the hormone’s ability to drive cortical efficiency339

within PFC circuits.340

Using dense-sampling approaches to probe brain-hormone interactions could reveal341

organizational principles of the functional connectome previously unknown, transforming342

our understanding of how hormones influence brain states. Human studies implicate343

sex steroids in the regulation of brain structure and function, particularly within ER-rich344

regions like the PFC and hippocampus11,12,15,16,28,29,48–50, yet the neuroendocrine basis of the345

brain’s network organization remains understudied. A network neuroscience approach346

allows us to understand how hormones modulate the integration of functional brain347

networks that span the entire cortical surface and subcortex, as opposed to examining348

discrete brain regions in isolation. Using this approach, we show that estradiol is associated349
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with increased coherence across broad swaths of cortex. At the network level, estradiol350

enhances the efficiency of most functional networks (with robust effects in DAN and DMN)351

and, to a lesser extent, increases between-network participation. Moving forward, this352

network neuroscience approach can be applied to brain imaging studies of other major353

neuroendocrine transitions, such as pubertal development and reproductive aging (e.g.354

menopause).355

An overarching goal of network neuroscience is to understand how coordinated356

activity within and between functional brain networks supports cognition. Increased357

global efficiency is thought to optimize a cognitive workspace51, while between-network358

connectivity may be integral for integrating top-down signals from multiple higher-order359

control hubs52. The dynamic reconfiguration of functional brain networks is implicated in360

performance across cognitive domains, including motor learning53,54, cognitive control55,361

and memory56. Our results demonstrate that within- and between-network connectivity362

of these large-scale networks at rest are hormonally regulated across the human menstrual363

cycle. Future studies should consider whether these network changes confer advantages to364

domain-general or domain-specific cognitive performance. Further, planned analyses from365

this dataset will incorporate task-based fMRI to determine whether the brain’s network366

architecture is hormonally regulated across the cycle when engaging in a cognitive task, or367

in the dynamic reconfiguration that occurs when transitioning from rest to task.368

The emerging field of clinical network neuroscience also seeks to understand how369

large-scale brain networks differ between healthy and patient populations57,58.370
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Disruptions in functional brain networks are implicated in a number of neurodegenerative371

and neuropsychiatric disorders. For example, intrinsic connectivity abnormalities in the372

DMN are evident in major depressive disorder59 and Alzheimer’s disease60. Notably,373

these conditions have a sex-skewed disease prevalence: women are at twice the risk for374

depression and make up two-thirds of the Alzheimer’s disease patient population61. Here,375

we show that global efficiency in the DMN and DAN are hormonally regulated, with376

estradiol driving increases in within-network integration. A long history of clinical377

evidence further implicates sex hormones in the development of mood disorders62,63.378

Throughout the lifecourse, changes in women’s reproductive status have been associated379

with increased risk for depression64–67. For example, the incidence of major depression380

increases with pubertal onset in females68, chronic use of hormonal contraceptives69, the381

postpartum period70, and perimenopause71. Moving forward, a network neuroscience382

approach could identify the large-scale network disturbances that underlie, or predict, the383

emergence of disease symptomology. Incorporating sex-dependent variables (such as384

endocrine status) into clinical network neuroscience models may be essential for385

identifying individuals at risk of disease. This may be particularly true during periods of386

profound neuroendocrine change (e.g. puberty, pregnancy, menopause, and use of387

hormone-based medications, reviewed by Taylor and colleagues72) given that these388

hormonal transitions are associated with a heightened risk for mood disorders.389

In sum, endogenous hormone fluctuations over the reproductive cycle have a robust390

impact on the intrinsic network properties of the human brain. Despite over 20 years of391
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evidence from rodent, nonhuman primate, and human studies demonstrating the tightly-392

coupled relationship between our endocrine and nervous systems, the field of network393

neuroscience has largely overlooked how endocrine factors shape the brain. The dynamic394

endocrine changes that unfold over the menstrual cycle are a natural feature of half of395

the world’s population. Understanding how these changes in sex hormones influence396

the large-scale functional architecture of the human brain is imperative for our basic397

understanding of the brain and for women’s health.398
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Online Methods413

Participants414

The participant (author L.P.) was a right-handed Caucasian female, aged 23 years for415

duration of the study. The participant had no history of neuropsychiatric diagnosis,416

endocrine disorders, or prior head trauma. She had a history of regular menstrual cycles417

(no missed periods, cycle occurring every 26-28 days) and had not taken hormone-based418

medication in the prior 12 months. The participant gave written informed consent and419

the study was approved by the University of California, Santa Barbara Human Subjects420

Committee.421

Study design422

The participant underwent daily testing for 30 consecutive days, with the first test session423

determined independently of cycle stage for maximal blindness to hormone status. The424

participant began each test session with a daily questionnaire (see Behavioral assessment),425

followed by an immersive reality spatial navigation task (not reported here) (Fig. 6).426

Time-locked collection of serum and whole blood started each day at 10:00am, when the427

participant gave a blood sample. Endocrine samples were collected, at minimum, after428

two hours of no food or drink consumption (excluding water). The participant refrained429

from consuming caffeinated beverages before each test session. The MRI session lasted430

one hour and consisted of structural and functional MRI sequences.431
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Behavioral assessments432

To monitor state-dependent mood and lifestyle measures over the cycle, the following433

scales (adapted to reflect the past 24 hours) were administered each morning: Perceived434

Stress Scale (PSS)73, Pittsburgh Sleep Quality Index (PSQI)74, State-Trait Anxiety Inventory435

for Adults (STAI)75, Profile of Mood States (POMS)76, and the Sexual Desire Inventory-2436

(SDI-2)77. We observed very few significant relationships between hormone and state-437

dependent measures following an FDR-correction for multiple comparisons (q < .05)—and438

critically, none of these state-dependent factors were associated with estradiol (Fig. 7a).439

The participant had moderate levels of anxiety as determined by STAI reference ranges;440

however, all other measures fell within the ‘normal’ standard range (Fig. 7b).441

Endocrine procedures442

A licensed phlebotomist inserted a saline-lock intravenous line into the dominant or443

non-dominant hand or forearm daily to evaluate hypothalamic-pituitary-gonadal axis444

hormones, including serum levels of gonadal hormones (17�-estradiol, progesterone and445

testosterone) and the pituitary gonadotropins luteinizing hormone (LH) and follicle446

stimulating hormone (FSH). One 10cc mL blood sample was collected in a vacutainer SST447

(BD Diagnostic Systems) each session. The sample clotted at room temperature for 45 min448

until centrifugation (2,000 ⇥g for 10 minutes) and were then aliquoted into three 1 ml449

microtubes. Serum samples were stored at -20� C until assayed. Serum concentrations450

were determined via liquid chromatography-mass spectrometry (for all steroid hormones)451
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and immunoassay (for all gonadotropins) at the Brigham and Women’s Hospital Research452

Assay Core. Assay sensitivities, dynamic range, and intra-assay coefficients of variation453

(respectively) were as follows: estradiol, 1 pg/mL, 1–500 pg/mL, < 5% relative standard454

deviation (RSD); progesterone, 0.05 ng/mL, 0.05–10 ng/mL, 9.33% RSD; testosterone, 1.0455

ng/dL, 1–2000 ng/dL, < 4% RSD; FSH and LH levels were determined via456

chemiluminescent assay (Beckman Coulter). The assay sensitivity, dynamic range, and the457

intra-assay coefficient of variation were as follows: FSH, 0.2 mIU/mL, 0.2–200 mIU/mL,458

3.1–4.3%; LH, 0.2 mIU/mL, 0.2–250 mIU/mL, 4.3–6.4%.459

fMRI acquisition and preprocessing460

The participant underwent a daily magnetic resonance imaging scan on a Siemens 3T461

Prisma scanner equipped with a 64-channel phased-array head coil. First, high-resolution462

anatomical scans were acquired using a T1-weighted magnetization prepared rapid463

gradient echo (MPRAGE) sequence (TR = 2500 ms, TE = 2.31 ms, TI = 934 ms, flip angle =464

7�; 0.8 mm thickness) followed by a gradient echo fieldmap (TR = 758 ms, TE1 = 4.92 ms,465

TE2 = 7.38 ms, flip angle = 60�). Next, the participant completed a 10-minute resting-state466

fMRI scan using a T ⇤
2 -weighted multiband echo-planar imaging (EPI) sequence sensitive467

to the blood oxygenation level-dependent (BOLD) contrast (TR = 720 ms, TE = 37 ms, flip468

angle = 56�, multiband factor = 8; 72 oblique slices, voxel size = 2 mm3). In an effort to469

minimize motion, the head was secured with a custom, 3D-printed foam head case470

(https://caseforge.co/) (days 8-30). Overall motion (mean framewise471

displacement) was negligible (Supplementary Fig. 3), with fewer than 130 microns of472
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motion on average each day. Importantly, mean framewise displacement was also not473

correlated with estradiol concentrations (Spearman r = �0.06, p = .758).474

Initial preprocessing was performed using the Statistical Parametric Mapping 12475

software (SPM12, Wellcome Trust Centre for Neuroimaging, London) in Matlab.476

Functional data were realigned and unwarped to correct for head motion and the mean477

motion-corrected image was coregistered to the high-resolution anatomical image. All478

scans were then registered to a subject-specific anatomical template created using479

Advanced Normalization Tools (ANTs) multivariate template construction480

(Supplementary Fig. 4). A 5 mm full-width at half-maximum (FWHM) isotropic481

Gaussian kernel was subsequently applied to smooth the functional data. Further482

preparation for resting-state functional connectivity was implemented using in-house483

Matlab scripts. Global signal scaling (median = 1,000) was applied to account for484

fluctuations in signal intensity across space and time, and voxelwise timeseries were485

linearly detrended. Residual BOLD signal from each voxel was extracted after removing486

the effects of head motion and five physiological noise components (CSF + white matter487

signal). Motion was modeled based on the Friston-24 approach, using a Volterra488

expansion of translational/rotational motion parameters, accounting for autoregressive489

and nonlinear effects of head motion on the BOLD signal78. All nuisance regressors were490

detrended to match the BOLD timeseries.491
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Functional connectivity estimation492

Functional network nodes were defined based on a 400-region cortical parcellation24
493

and 15 regions from the Harvard-Oxford subcortical atlas (http://www.fmrib.ox.494

ac.uk/fsl/). For each day, a summary timecourse was extracted per node by taking495

the first eigenvariate across functional volumes79. These regional timeseries were then496

decomposed into several frequency bands using a maximal overlap discrete wavelet497

transform. Low-frequency fluctuations in wavelets 3–6 (⇠0.01–0.17 Hz) were selected498

for subsequent connectivity analyses80. Finally, we estimated the spectral association499

between regional timeseries using magnitude-squared coherence: this yielded a 415 ⇥ 415500

functional association matrix each day, whose elements indicated the strength of functional501

connectivity between all pairs of nodes (FDR-thresholded at q < .05).502

Statistical analysis503

First, we assessed time-synchronous variation in functional connectivity associated with504

estradiol and progesterone through a standardized regression analysis. Data were Z-505

transformed and edgewise coherence was regressed against hormonal timeseries to capture506

day-by-day variation in connectivity relative to hormonal fluctuations. For each model,507

we computed robust empirical null distributions of test-statistics via 10,000 iterations of508

nonparametric permutation testing—while this process has been shown to adequately509

approximate false positive rates of 5%81, we elected to report only those edges surviving a510

conservative threshold of p < .001 to avoid over-interpretation of whole-brain effects.511
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Next, we sought to capture causal linear dependencies between estradiol and network512

connectivity over time using vector autoregressive (VAR) models. A given VAR model513

takes a set of variables at time, t, and simultaneously regresses them against previous514

(time-lagged) states of themselves and each other. For consistency, we only considered515

second-order VAR models, given a fairly reliable first zero-crossing of brain/hormone516

autocovariance functions at lag two. Fit parameters for each VAR therefore reflect the517

following general form:518

Braint = b1,0 + b1,1Braint�1 + b1,2Estradiolt�1 + b1,3Braint�2 + b1,4Estradiolt�2 + et

Estradiolt = b2,0 + b2,1Braint�1 + b2,2Estradiolt�1 + b2,3Braint�2 + b2,4Estradiolt�2 + et
(1)

With respect to brain states, we modeled both edgewise coherence and factors related519

to macroscale network topologies. Specifically, we computed measures of between-network520

integration (the participation coefficient; i.e. the average extent to which network nodes521

are communicating with other networks over time) and within-network integration (global522

efficiency, quantifying the ostensible ease of information transfer across nodes inside523

a given network). Regardless of brain measure, each VAR was estimated similarly to524

the time-synchronous analyses described above: data were Z-scored, models were fit,525

and all effects were empirically-thresholded against 10,000 iterations of nonparametric526

permutation testing.527

Finally, for each set of edgewise models (time-synchronous and time-lagged), we528

attempted to disentangle both the general direction of hormone-related associations and529
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whether certain networks were more or less susceptible to hormonal fluctuations. Toward530

that end, we estimated nodal association strengths per graph theory’s treatment of signed,531

weighted networks—that is, positive and negative association strengths were computed532

independently for each node by summing the positive and negative edges linked to them533

(after empirical thresholding), respectively. We then simply assessed mean association534

strengths across the various networks in our parcellation.535

Here, networks were defined by grouping the subnetworks of the 17-network Schaefer536

parcellation, such that (for example), the A, B, and C components of the Default Mode537

Network were treated as one network. We chose this due to the presence of a unique538

Temporal Parietal Network in the 17-network partition, which is otherwise subsumed539

by several other networks (Default Mode, Ventral Attention, and SomatoMotor) in the540

7-network partition. The subcortical nodes of the Harvard-Oxford atlas were also treated as541

their own network, yielding a total of nine networks. These definitions were subsequently542

used for computation of participation coefficients and global efficiencies in network-level543

VAR models.544

Brain data visualization545

Statistical maps of edgewise coherence v. hormones were visualized using the Surf Ice546

software (https://www.nitrc.org/projects/surfice/).547
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Table 1. Gonadal and pituitary hormones by cycle stage. 

 Follicular Ovulatory Luteal 

 Mean (SD) 
standard range 

Mean (SD) 
standard range 

Mean (SD) 
standard range 

Estradiol (pg/mL) 37.9 (15.9) 185.3 (59.0) 85.4 (26.4) 
12.5-166.0 85.8-498.0 43.8-210.0 

Progesterone (ng/mL) 0.2 (0.2) 0.2 (.2) 9.5 (4.8) 
0.1-0.9 0.1-120 1.8-23.9 

LH (mIU/mL) 5.9 (0.7) 21.7 (16.4) 5.5 (2.0) 

2.4-12.6 14.0-95.6 1.0-11.4 

FSH (mIU/mL) 6.5 (1.2) 8.1 (3.6) 4.8 (1.3) 

3.5-12.5 4.7-21.5 1.7-7.7 



 
Table 2. Vector autoregressive model for cross-network participation. 

Network Outcome Predictor Estimate SE T (p) 

Dorsal 
Attention 

Participation 

Constant 0.08 0.16 0.49 (.099) 
DANt-1 0.15 0.18 0.84 (.405) 
Estradiolt-1 -0.56 0.25 -2.27 (.035) 
DANt-2 -0.29 0.17 -1.71 (.093) 
Estradiolt-2 0.53 0.24 2.16 (.042) 

R2 = 0.32 (p = .049); RMSE = 0.79 (p = .050) 
     

Estradiol 

Constant 6.88 x 10-5 0.12 0.001 (.998) 
DANt-1 0.06 0.14 0.47 (.627) 
Estradiolt-1 1.12 0.18 6.12 (< .0001) 
DANt-2 0.03 0.13 0.24 (.806) 
Estradiolt-2 -0.48 0.18 -2.65 (.007) 

R2 = 0.67 (p = .0001); RMSE = 0.59 (p = .0009) 
Note. p-values empirically-derived via 10,000 iterations of nonparametric permutation testing. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Note. p-values empirically-derived via 10,000 iterations of nonparametric permutation testing. 
 
 

 
 
 
 
 
 
Table 3. Vector autoregressive models for global efficiency. 

Network Outcome Predictor Estimate SE T (p) 

Default 
Mode 

Efficiency 

Constant 0.04 0.15 0.28 (.279) 
DMNt-1 -0.04 0.16 -0.27 (.764) 
Estradiolt-1 0.98 0.23 3.37 (.0003) 
DMNt-2 -0.02 0.16 -0.11 (.907) 
Estradiolt-2 -0.93 0.23 -4.00 (.002) 

R2 = 0.50 (p = .003); RMSE = 0.70 (p = .022) 
 

Estradiol 

Constant 0.01 0.12 0.09 (.729) 
DMNt-1 -0.12 0.13 -0.95 (.339) 
Estradiolt-1 1.15 0.19 6.15 (< .0001) 
DMNt-2 -0.01 0.13 -0.08 (.930) 
Estradiolt-2 -0.48 0.19 -2.50 (.012) 

R2 = 0.67 (p < .0001); RMSE = 0.58 (p = .0004) 

Dorsal 
Attention 

Efficiency 

Constant 0.01 0.16 0.08 (.783) 
DANt-1 -0.11 0.18 -0.60 (.562) 
Estradiolt-1 0.84 0.25 3.35 (.002) 
DANt-2 -0.10 0.18 -0.58 (.571) 
Estradiolt-2 -0.67 0.16 -2.57 (.017) 

R2 = 0.37 (p = .022); RMSE = 0.77 (p = .023) 
     

Estradiol 

Constant 0.01 0.12 0.06 (.808) 
DANt-1 -0.17 0.13 -1.29 (.207) 
Estradiolt-1 1.17 0.19 6.30 (< .0001) 
DANt-2 -0.02 0.13 -0.16 (.875) 
Estradiolt-2 -0.48 0.19 -2.49 (.011) 

R2 = 0.68 (p < .0001); RMSE = 0.57 (p = .0004) 
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Figure 1 | Participant’s hormone concentrations plotted by day of cycle. 17β-estradiol, 
progesterone, luteinizing hormone (LH), and follicle stimulating hormone (FSH) 
concentrations fell within standard ranges. 
 
Figure 2 | Whole-brain functional connectivity at rest is associated with intrinsic 
fluctuations in estradiol and progesterone. a) Time-synchronous (i.e. day-by-day) 
associations between estradiol and coherence. Hotter colors indicate increased 
coherence with higher concentrations of estradiol; cool colors indicate the reverse. 
Results are empirically-thresholded via 10,000 iterations of nonparametric permutation 
testing (p < .001). Nodes without significant edges are omitted for clarity. b) Time-
synchronous associations between progesterone and coherence. Hotter colors indicate 
increased coherence with higher concentrations of progesterone; cool colors indicate the 
reverse. c) Cortical parcellations were defined from the 400-node Schafer atlas (shown 
here). An additional 15 subcortical nodes were defined from the Harvard-Oxford atlas. 
d) Mean nodal association strengths by network and hormone. Error bars give 95% 
confidence intervals. Abbreviations: DMN = Default Mode Network; DorsAttn = Dorsal 
Attention Network; SalVentAttn = Salience/Ventral Attention Network; SomMot = 
SomatoMotor Network; TempPar = Temporal Parietal Network. 
 
Figure 3 | Whole-brain functional connectivity is linearly dependent on previous 
states of estradiol. a) Time-lagged associations between coherence and previous states 
of estradiol at lag 1 (left) and lag 2 (right), derived from edgewise vector autoregression 
models. Hotter colors indicate a predicted increase in coherence given previous 
concentrations of estradiol; cool colors indicate the reverse. Results are empirically-
thresholded via 10,000 iterations of nonparametric permutation testing (p < .001). Nodes 
without significant edges are omitted for clarity. b) Mean nodal association strengths by 
network and time lag. Error bars give 95% confidence intervals.  
 
Figure 4 | Dorsal Attention Network topology is driven by previous states of 
estradiol. Observed data (solid lines) vs. VAR model fits (dotted lines) for between-
network participation (b, middle) and within-network efficiency (c, right) in the Dorsal 
Attention Network (a, left). Timeseries for each network statistic are depicted above in 
b,c and estradiol for each VAR is plotted below. Data are in standardized units and 
begin at experiment day three, given the second-order VAR (lag of two days).  
 
Figure 5 |Default Mode Network topology is driven by previous states of estradiol. 
Observed data (solid lines) vs. VAR model fits (dotted lines) for within-network efficiency 
(b, right) in the Default Mode Network (a, left). The efficiency timeseries is depicted 
above in b and estradiol is plotted below. Data are in standardized units and begin at 
experiment day three, given the second-order VAR (lag of two days). 
 
Figure 6 | Timeline of data collection for the 30 experimental sessions. Endocrine and 
MRI assessments were collected at the same time each day to minimize time of day 
effects.  
 



 
Figure 7 | Behavioral variation across the 30-day experiment. a) Correlation plot 
showing relationships between mood, lifestyle measures, and sex steroid hormone 
concentrations. Cooler colors indicate negative correlations, warm colors indicate 
positive correlations, and white colors indicate no relationship. Asterisks indicate 
significant correlation, FDR-corrected (q < .05). b) Mood and lifestyle measures vary 
across the cycle. ‘Day 1’ indicates first day of menstruation. Abbreviations: LH = 
Luteinizing hormone, FSH = Follicle-stimulating hormone. 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure	1.	Participant’s	hormone	concentrations	plotted	by	day	of	cycle.	17β-estradiol,	
progesterone,	luteinizing	hormone	(LH),	and	follicle	stimulating	hormone	(FSH)	concentrations	fell	
within	standard	ranges.		

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Figure	2.	Whole-brain	functional	connectivity	at	rest	is	associated	with	intrinsic	fluctuations	
in	estradiol	and	progesterone.	a)	Time-synchronous	(i.e.	day-by-day)	associations	between	
estradiol	and	coherence.	Hotter	colors	indicate	increased	coherence	with	higher	concentrations	of	
estradiol;	cool	colors	indicate	the	reverse.	Results	are	empirically-thresholded	via	10,000	iterations	
of	nonparametric	permutation	testing	(p	<	.001).	Nodes	without	significant	edges	are	omitted	for	
clarity.	b)	Time-synchronous	associations	between	progesterone	and	coherence.	Hotter	colors	
indicate	increased	coherence	with	higher	concentrations	of	progesterone;	cool	colors	indicate	the	
reverse.	c)	Cortical	parcellations	were	defined	from	the	400-node	Schafer	atlas	(shown	here).	An	
additional	15	subcortical	nodes	were	defined	from	the	Harvard-Oxford	atlas.	d)	Mean	nodal	
association	strengths	by	network	and	hormone.	Error	bars	give	95%	confidence	intervals.	
Abbreviations:	DMN	=	Default	Mode	Network;	DorsAttn	=	Dorsal	Attention	Network;	SalVentAttn	=	
Salience/Ventral	Attention	Network;	SomMot	=	SomatoMotor	Network;	TempPar	=	Temporal	
Parietal	Network.		



 
 

Figure	3.	Whole-brain	functional	connectivity	is	linearly	dependent	on	previous	states	of	
estradiol.	a)	Time-lagged	associations	between	coherence	and	estradiol	at	lag	1	(left)	and	lag	2	
(right),	derived	from	edgewise	vector	autoregression	models.	Hotter	colors	indicate	a	predicted	
increase	in	coherence	given	previous	concentrations	of	estradiol;	cool	colors	indicate	the	reverse.	
Results	are	empirically-thresholded	via	10,000	iterations	of	nonparametric	permutation	testing	(p	
<	.001).	Nodes	without	significant	edges	are	omitted	for	clarity.	b)	Mean	nodal	association	strengths	
by	network	and	time	lag.	Error	bars	give	95%	confidence	intervals.		

 
 
 
 
 
 
 
 
 



 
 

Figure	4.	Dorsal	Attention	Network	topology	is	driven	by	previous	states	of	estradiol.	
Observe	data	(solid	lines)	vs.	VAR	model	fits	(dotted	lines)	for	between-network	participation	(b,	
middle)	and	within-network	efficiency	(c,	right)	in	the	Dorsal	Attention	Network	(a,	left).	
Timeseries	for	each	network	statistic	are	depicted	above	in	b,c	and	estradiol	for	each	VAR	is	plotted	
below.	Data	are	in	standardized	units	and	begin	at	experiment	day	three,	given	the	second-order	
VAR	(lag	of	two	days).	 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



	

	

	

	

	

	

	

	

	

	

	

	

Figure	5.	Default	Mode	Network	topology	is	driven	by	previous	states	of	estradiol.	Observed	
data	(solid	lines)	vs.	VAR	model	fits	(dotted	lines)	for	within-network	efficiency	(b,	right)	in	the	
Default	Mode	Network	(a,	left).	The	efficiency	timeseries	is	depicted	above	in	b	and	estradiol	is	
plotted	below.	Data	are	in	standardized	units	and	begin	at	experiment	day	three,	given	the	second-
order	VAR	(lag	of	two	days).	 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 
 

 

Figure	6.	Timeline	of	data	collection	for	the	30	experimental	sessions.	Endocrine	and	MRI	
assessments	were	collected	at	the	same	time	each	day	to	minimize	time	of	day	effects.	 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Figure	7.	Behavioral	variation	across	the	30	day	experiment.	a)	Correlation	plot	showing	
relationships	between	mood,	lifestyle	measures,	and	sex	steroid	hormone	concentrations.	Cooler	
colors	indicate	negative	correlations,	warm	colors	indicate	positive	correlations,	and	white	colors	
indicate	no	relationship.	Asterisks	indicate	significant	correlation,	FDR-corrected	(q	<	.05).	b)	Mood	
and	lifestyle	measures	vary	across	the	cycle.	‘Day	1’	indicates	first	day	of	menstruation,	not	first	day	
of	experiment.	Abbreviations:	LH	=	Luteinizing	hormone,	FSH	=	Follicle-stimulating	hormone.	 

 
 
 
 
 
 
 
 
 
 
 
 
 


